Users turn a giant knob on the 4th floor of ITP and control the brightness of a virtual LED in AR positioned on a physical column in the Tisch Lounge. 


Inside the knob will be a rotary encoder to track the exact position of the element. These values are read and continuously sent to a remote AWS server from a nodeMCU 8266 wifi module inside the knob via serial/python/websockets. On the server they are stored in a txt-file and read into a publicly accessible html-file serving the AR-LED in an AR version of three.js. We will have to test how much of a delay we will have using this communication. A public server seems to be the only way for the audience to access the AR site from outside the local NYU network. The delay might still be acceptable as knob and AR-column are situated on different floors. With iOS 11, AR on mobile is possible now on all platforms using getUserMedia/camera access. 

Here a quick test with the github-example library, a target displayed on a screen and an iPhone running iOS 11:




We found a 3ft long rotating steel arm with bearings and attachment ring in the shop junk-shelf. We will use it as the core rotating element inside the knob. 


This rotating element will be mounted on a combination of wooden (plywood) bases that will stabilize the knob when it is getting moved. The weight of the knob will rest on wheels that are running on a rail/channel in the wide base that features a wave structure inside so that the 'click' of the knob feels more accurate. Inside the knob we will build a structure with 2 solid wooden rings that are the diameter of the knob and are attached to the rotating element. On the outside we will cover the knob with lightweight wooden planks or cardboard tubes. 



We worked on the wooden base for the knob/metal pole using multi-layered plywood to keep the rotary encoder within the same wooden element as the pole - this prevents a damage of the electronics/mechanics once there is a push or tilt towards the sides of the knob.



In collaboration with Brandon Newberg & Anthony Bui.


Screenshot from 2017-11-20 11-13-35.png




  • Tue. 21 Nov. 2017: tech communication finished, fabrication parts ordered

work on automation + fabrication (knob), work on AR script

  • Tue. 28 Nov. 2017: all communications work, knob basic fabrication finished

work on fabrication finish, column, code cleaning, documentation, 

  • Tue. 5 Dec. 2017: final presentation